Técnicas de aprendizaje automático aplicadas a simulaciones numéricas de colisiones de material granular poroso

En este seminario, se presenta un método computacional para obtener información sobre el desenlace de simulaciones de colisiones de granos porosos antes de que las mismas finalicen, permitiendo ahorrar así tiempo de simulación. Para este fin, se desarrolló un sistema de aprendizaje automático, en el...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rim, Daniela Noemí
Otros Autores: Millán, Emmanuel N., Monge, David A., Moyano, Luis G., Ruestes, Carlos J.
Publicado: 2018
Materias:
Acceso en línea:https://bdigital.uncu.edu.ar/fichas.php?idobjeto=14000
Descripción
Sumario:En este seminario, se presenta un método computacional para obtener información sobre el desenlace de simulaciones de colisiones de granos porosos antes de que las mismas finalicen, permitiendo ahorrar así tiempo de simulación. Para este fin, se desarrolló un sistema de aprendizaje automático, en el cual los algoritmos de aprendizaje supervisado "aprenden" a categorizar cada partícula constituyente del sistema colisionante según a cuál fragmento pertenezcan luego de producirse la colisión. Con la metodología aquí propuesta se logra predecir el desenlace de 35 simulaciones de distintos parámetros generales y tamaños (con un 95% de aciertos en cada una) ahorrando un 73.3% del tiempo total que tomaría ejecutarlas hasta el tiempo de finalización.