Estudio de superficies nanoestructuradas, nanopartículas y/o películas plasmónicas, funcionalizadas con marcadores biológicos de interés para el diagnóstico de enfermedades
It is proposed to manufacture and characterize plasmonic substrates and / or optical nano-antennas that allow the amplification of the electromagnetic field in the location sites of biomolecules relevant to health, to be detected by plasmonic methods. For this, theoretical simulations will be used t...
Guardado en:
Autores principales: | , , , |
---|---|
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://bdigital.uncu.edu.ar/fichas.php?idobjeto=14480 |
Sumario: | It is proposed to manufacture and characterize plasmonic substrates and / or optical nano-antennas that allow the amplification of the electromagnetic field in the location sites of biomolecules relevant to health, to be detected by plasmonic methods. For this, theoretical simulations will be used to make an optimal and rational design of its geometry, size, roughness and spatial orientation on the substrate, in order to achieve the highest reproducibility and possible amplification of its plasmonic properties, both to be used in the detection by direct SERS spectroscopy, as well as coupled to SPR using a Krestchman type configuration. In turn, said substrates and nano-antennas could be coupled to electrical transport systems or electrochemical systems, to obtain complementary information, either sequentially or simultaneously. Ideally, it would be desirable to use optical nano-antennas as microelectrodes capable of being coupled to microchips, in order to obtain biosensors that allow dual detection, both spectroscopic and electrical DNA sequences or markers of neglected diseases, previously immobilized in nanocavities generated between the nano-antennas, to be applied to the study and detection of biorecognition events and / or biomolecular interactions. To do this, simulations will be carried out to study the effect of electrical contacts, their size and geometry, on the amplification of the electromagnetic field obtained between the cavity of the nanowires. On the other hand, we seek to achieve the best way to immobilize the recognition biomolecules on the surface, in order to reasonably optimize the experimental conditions and obtain the best possible interaction affinity to achieve a better sensitivity in the analytical parameters of the detection methodology . As a whole, it is expected to apply substrates and plasmonic nanostructures to the development of more efficient detection methods, combining specific designs of nano and metallic microstructures to obtain the best advantages of both scales and techniques, and thus achieve an optimal amplification of the electromagnetic field to improve the sensitivity of SPR / SERS technologies in applications that favor the early diagnosis of diseases and the increase in the quality of life of patients. |
---|