Micro flows : fundamentals and simulation /

Guardado en:
Detalles Bibliográficos
Autor principal: Karniadakis, George.
Otros Autores: Beskök, Ali, 1966-
Formato: Libro
Lenguaje:
Publicado: New York : Springer, 2002.
Materias:
Acceso en línea:Indice
LEADER 04935cam#a22002654a#4500
005 20061219093915.0
008 010601s2002####nyua##########001#0#eng##
001 BCCAB004589
003 AR-BCCAB
245 1 0 |a Micro flows :  |b fundamentals and simulation /  |c George Em Karniadakis, Ali Beskok. 
260 # # |a New York :  |b Springer,  |c 2002. 
300 # # |a xv, 340 p. :  |b il. ;  |c 24 cm. 
505 8 # |a Machine generated contents note: 1 Basic Concepts and Technologies 1 -- 1.1 New Flow Regimes in MEMS1 -- 1.2 The Continuum Hypothesis7 -- 1.2.1 Molecular Magnitudes11 -- 1.2.2 Mixed Flow Regimes16 -- 1.2.3 Experimental Evidence17 -- 1.3 The Pioneers21 -- 1.4 Full-System Simulation of MEMS24 -- 1.5 Modeling of Micro Flows31 -- 2 Governing Equations and Slip Models 39 -- 2.1 The Basic Equations of Fluid Dynamics39 -- 2.1.1 Incompressible Flow42 -- 2.1.2 Reduced Models44 -- 2.2 Compressible Flow45 -- 2.2.1 First-Order Models47 -- 2.2.2 The Role of the Accommodation Coefficients49 -- 2.3 High-Order Models53 -- 2.3.1 Derivation of High-Order Slip Models54 -- 2.3.2 General Slip Condition57 -- 2.3.3 Comparison of Slip Models61 -- 3 Shear-Driven and Separated -- Micro Flows 63 -- 3.1 Couette Flow63 -- 3.2 Cavity Flow67 -- 3.3 Grooved Channel Flow68 -- 3.4 Separated Internal Flows71 -- 3.4.1 Validation of Slip Models with DSMC77 -- 3.5 Separated External Flows83 -- 4 Pressure-Driven Micro Flows: -- Slip Flow Regime 87 -- 4.1 Isothermal Compressible Flows87 -- 4.2 Adiabatic Compressible Flows - Fanno Theory95 -- 4.3 Inlet Flows101 -- 4.4 Validation of Slip Models with DSMC102 -- 4.5 Effects of Roughness108 -- 5 Pressue-Driven Micro Flows: Transition and -- Free-Molecular Regimes 113 -- 5.1 Transition and Free-Molecular Flow Regimes113 -- 5.2 Burnett Equations in Micro Channels117 -- 5.3 A Unified Flow Model119 -- 5.3.1 Velocity Scaling 119 -- 5.3.2 Flowrate Scaling122 -- 5.3.3 Model for Pipe and Duct Flows127 -- 6 Thermal Effects in Micro Scales 139 -- 6.1 Thermal Creep (Transpiration)139 -- 6.1.1 Simulation Results141 -- 6.1.2 A Thermal Creep Experiment145 -- 6.1.3 Knudsen Compressors146 -- 6.1.4 Other Temperature-Induced Flows147 -- 6.1.5 Heat Conduction and the Ghost Effect149 -- 6.2 Heat Transfer in Micro Poiseuille Flows151 -- 6.3 Heat Transfer in Micro Couette Flows158 -- 7 Prototype Applications of Gas -- Micro Flows 163 -- 7.1 Gas Damping and Dynamic Response of MEMS163 -- 7.1.1 Reynolds Equation166 -- 7.1.2 Squeezed Film Effects in Accelerometers173 -- 7.2 Micro Propulsion and Micro Nozzle Flows178 -- 7.2.1 Micro Propulsion Analysis180 -- 7.2.2 Rarefaction and Other Effects184 -- 8 Electrokinetically Driven Liquid -- Micro Flows 193 -- 8.1 Electrokinetic Effects - Review194 -- 8.2 The Electric Double Layer195 -- 8.3 Near-Wall Potential Distribution197 -- 8.4 Governing Equations for Electroosmotic Flows199 -- 8.4.1 Numerical Formulation and Validation200 -- 8.5 Electrokinetic Micro Channel Flows202 -- 8.6 EDL/Bulk Flow Interface Velocity -- Matching Condition207 -- 8.7 Electroosmotic Slip Condition208 -- 8.7.1 Approximate Evaluation of Drag Force due to -- Electroosmotic Effects209 -- 8.8 Complex Geometry Flows210 -- 8.8.1 Cross-Flow Junctions211 -- 8.8.2 Array of Circular and Square Posts213 -- 8.9 Dielectrophoresis215 -- 9 Numerical Methods for -- Continuum Simulation 223 -- 9.1 A High-Order Numerical Method: The Flow Code224 -- 9.1.1 Formulation for Incompressible Micro Flows228 -- 9.1.2 Formulation for Compressible Micro Flows231 -- 9.1.3 Implementation of Slip Boundary Conditions236 -- 9.1.4 Validation Problems237 -- 9.2 A Meshless Numerical Method239 -- 9.3 The Force Coupling Method for Particulate -- Micro Flows246 -- 10 Numerical Methods for -- Atomistic Simulation 257 -- 10.1 Molecular Dynamics (MD) Method257 -- 10.1.1 MD-Continumm Coupling263 -- 10.2 Direct Simulation Monte Carlo (DSMC) Method266 -- 10.2.1 Limitations and Errors in DSMC269 -- 10.2.2 DSMC-Information Preservation Method274 -- 10.2.3 DSMC-Continuum Coupling275 -- 10.3 The Boltzmann Equation279 -- 10.3.1 General Theory279 -- 10.3.2 Classical Solutions of Boltzmann Equation284 -- 10.3.3 Sone's Asymptotic Theory of -- Boltzmann Equation288 -- 10.3.4 Numerical Solutions of Boltzmann Equation297 -- 10.3.5 Non-Isothermal Flows301 -- 10.4 Lattice-Boltzmann Method (LBM)303 -- 10.4.1 Comparison with Navier-Stokes Solution306 -- 10.4.2 LBM Simulation of Micro Flows308 -- Bibliography 311 -- Index 335. 
020 # # |a 0387953248 (alk. paper) 
100 1 # |a Karniadakis, George. 
700 1 # |a Beskök, Ali,  |d 1966- 
650 # 0 |a Fluid mechanics. 
650 # 0 |a Micromechanics. 
650 # 7 |a Dinamica de fluidos  |2 inist 
504 # # |a Incluye referencias bibliográficas (p. [311]-334) e índice. 
040 # # |a DLC  |c DLC  |d DLC  |b spa  |d arbccab 
500 # # |a Incluye índice. 
856 4 1 |3 Indice  |u http://www.loc.gov/catdir/tocs/fy02/2001041113.html 
942 # # |c BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |i 19027  |o 532 K147  |p 19027  |t 1  |y BK