The chemical bond in inorganic chemistry : the bond valence model /
Guardado en:
Autor principal: | |
---|---|
Formato: | Libro |
Lenguaje: | |
Publicado: |
Oxford ; New York :
Oxford University Press,
2002.
|
Colección: | International Union of Crystallography monographs on crystallography ;
12 |
Materias: | |
Acceso en línea: | Indice Descripción del editor |
Tabla de Contenidos:
- Machine generated contents note: I Theory
- 2 The ionic bond
- 2.1 Introduction
- 2.2 Crystal energy and the Coulomb field
- 2.3 How are the atom fragments chosen?
- 2.4 The Madelung field of a crystal
- 2.5 Bond networks and bond graphs
- 2.6 Coordination number
- 2.7 Conclusions
- 3 The bond valence model
- 3.1 Experimental bond valences and bond lengths
- 3.2 Empirical network equations
- 3.3 The bond valence model
- 3.4 The distortion theorem
- 3.5 Bond networks with non-bipartite graphs
- II Chemistry
- 4 Anion and cation bonding strengths
- 4.1 Bond graphs and coordination number
- 4.2 Anion bonding strength
- 4.3 Cation bonding strength
- 4.4 The valence matching principle
- 4.5 Hard and soft acids and bases
- 4.6 Applications of the valence matching principle
- 5 Liquids
- 5.1 introduction
- 5.2 Cation and anion bonding strength of water
- 5.3 Reactions of cations with water
- 5.4 Reactions of anions with water
- 5.5 Aqueous solubility
- 5.6 Aqueous solutions of soft ions
- 5.7 Non-aqueous solutions and melts
- 6 Cation coordination number
- 6.1 Introduction
- 6.2 Anion-anion repulsion
- 6.3 The strength of the anions
- 6.4 Other factors
- 6.5 Applying the different effects
- 7 Hydrogen bonds
- 7.1 Introduction
- 7.2 The role of anion-anion repulsion
- 7.3 The normal hydrogen bond
- 7.4 Strong hydrogen bonds
- 7.5 Weak hydrogen bonds
- 7.6 The structural chemistry of hydrogen bonds
- 7.7 Other types of hydrogen bonds
- 7.8 Assigning experimental bond valences to hydrogen bonds
- 8 Electronically distorted structures
- 8.1 The origins of electronic distortion
- 8.2 Non-bonding valence shell electrons
- 8.3 Transition metals
- 8.3.1 Jahn-Teller distorted cations
- 8.3.2 Transition-metal cations with empty or near-empty d shells
- 8.4 Conclusions
- 9 Physical properties of bonds
- 9.1 Introduction
- 9.2 Bond lengths and bond angles
- 9.3 Bond force constants and thermal vibrations
- 9.4 Thermal expansion
- 9.5 The variation of Ro with temperature
- III Solids
- 10 Space and space groups
- 10.1 Introduction
- 10.2 The crystal lattice and translational symmetry
- 10.3 Space groups
- 10.4 Special positions
- 10.5 Matching the special positions to the chemistry
- 10.6 The symmetry of bonded neighbours
- 10.7 Summary
- 11 Modelling inorganic structures
- 11.1 The problem of a priori modelling
- 11.2 Determining the topology
- 11.2.1 Space-based approaches
- 11.2.2 Chemistry-based approaches
- 11.2.3 Valence maps
- 11.3 Refining the geometry
- 11.4 Modelling defect structures
- 11.5 Modelling glasses
- 11.6 Summary
- 12 Lattice-induced strain
- 12.1 The origins of lattice-induced strain
- 12.2 Structures with lattice-induced strain
- 12.3 Relaxation of lattice-induced strains
- 12.3.1 Relaxation of the geometry
- 12.3.2 Relaxation by defects
- 12.3.3 Electronic relaxation
- 12.3.4 Relaxation of symmetry-displacive phase transitions
- 12.3.5 Changing the bond
- graph-reconstructive phase transitions
- 12.4 Incommensurate structures
- 12.5 Summary
- IV Applications and implications
- 13 Applications
- 13.1 Introduction r
- 13.2 Crystallography
- 13.2.1 Structure solution
- 13.2.2 Analysis of crystal structures
- 13.3 Physics
- 13.3.1 Perovskite-related solids
- 13.3.2 Electrical properties
- 13.3.3 Magnetic properties
- 13.3.4 Grain boundaries
- 13.4 Mineralogy
- 13.4.1 Soil chemistry
- 13.4.2 Zeolites
- 13.4.3 Glasses
- 13.5 Chemistry
- 13.5.1 Nuclear magnetic resonance
- 13.5.2 Transition-metal complexes
- 13.5.3 Heterogeneous catalysis
- 13.5.4 Esterification and hydrolysis
- 13.6 Biology
- 13.6.1 Enzymes
- 13.6.2 Calcium and sodium binding by proteins
- 13.7 Databases
- 14 Chemical implications of the bond valence model
- 14.1 Why is the bond valence model so robust?
- 14.1.1 The attractive force
- 14.1.2 The repulsive force
- 14.2 Two-body potential models
- 14.3 The properties of the bond graph
- 14.4 The Lewis electron-pair model
- 14.5 Why are cations different from anions?
- 14.6 Orbital models
- 14.7 Electron density models
- 14.8 The topology of the Madelung field
- 14.9 Conclusions
- Appendices
- Appendix I Bond valence parameters
- Appendix 2 Space group spectra
- Appendix 3 Solution of the network equations
- Appendix 4 Cation and anion bonding strengths
- Appendix 5 References to the ICSD and the CSD
- References
- List of symbols
- Index.