The chemical bond in inorganic chemistry : the bond valence model /

Guardado en:
Detalles Bibliográficos
Autor principal: Brown, I. David
Formato: Libro
Lenguaje:
Publicado: Oxford ; New York : Oxford University Press, 2002.
Colección:International Union of Crystallography monographs on crystallography ; 12
Materias:
Acceso en línea:Indice
Descripción del editor
Tabla de Contenidos:
  • Machine generated contents note: I Theory
  • 2 The ionic bond
  • 2.1 Introduction
  • 2.2 Crystal energy and the Coulomb field
  • 2.3 How are the atom fragments chosen?
  • 2.4 The Madelung field of a crystal
  • 2.5 Bond networks and bond graphs
  • 2.6 Coordination number
  • 2.7 Conclusions
  • 3 The bond valence model
  • 3.1 Experimental bond valences and bond lengths
  • 3.2 Empirical network equations
  • 3.3 The bond valence model
  • 3.4 The distortion theorem
  • 3.5 Bond networks with non-bipartite graphs
  • II Chemistry
  • 4 Anion and cation bonding strengths
  • 4.1 Bond graphs and coordination number
  • 4.2 Anion bonding strength
  • 4.3 Cation bonding strength
  • 4.4 The valence matching principle
  • 4.5 Hard and soft acids and bases
  • 4.6 Applications of the valence matching principle
  • 5 Liquids
  • 5.1 introduction
  • 5.2 Cation and anion bonding strength of water
  • 5.3 Reactions of cations with water
  • 5.4 Reactions of anions with water
  • 5.5 Aqueous solubility
  • 5.6 Aqueous solutions of soft ions
  • 5.7 Non-aqueous solutions and melts
  • 6 Cation coordination number
  • 6.1 Introduction
  • 6.2 Anion-anion repulsion
  • 6.3 The strength of the anions
  • 6.4 Other factors
  • 6.5 Applying the different effects
  • 7 Hydrogen bonds
  • 7.1 Introduction
  • 7.2 The role of anion-anion repulsion
  • 7.3 The normal hydrogen bond
  • 7.4 Strong hydrogen bonds
  • 7.5 Weak hydrogen bonds
  • 7.6 The structural chemistry of hydrogen bonds
  • 7.7 Other types of hydrogen bonds
  • 7.8 Assigning experimental bond valences to hydrogen bonds
  • 8 Electronically distorted structures
  • 8.1 The origins of electronic distortion
  • 8.2 Non-bonding valence shell electrons
  • 8.3 Transition metals
  • 8.3.1 Jahn-Teller distorted cations
  • 8.3.2 Transition-metal cations with empty or near-empty d shells
  • 8.4 Conclusions
  • 9 Physical properties of bonds
  • 9.1 Introduction
  • 9.2 Bond lengths and bond angles
  • 9.3 Bond force constants and thermal vibrations
  • 9.4 Thermal expansion
  • 9.5 The variation of Ro with temperature
  • III Solids
  • 10 Space and space groups
  • 10.1 Introduction
  • 10.2 The crystal lattice and translational symmetry
  • 10.3 Space groups
  • 10.4 Special positions
  • 10.5 Matching the special positions to the chemistry
  • 10.6 The symmetry of bonded neighbours
  • 10.7 Summary
  • 11 Modelling inorganic structures
  • 11.1 The problem of a priori modelling
  • 11.2 Determining the topology
  • 11.2.1 Space-based approaches
  • 11.2.2 Chemistry-based approaches
  • 11.2.3 Valence maps
  • 11.3 Refining the geometry
  • 11.4 Modelling defect structures
  • 11.5 Modelling glasses
  • 11.6 Summary
  • 12 Lattice-induced strain
  • 12.1 The origins of lattice-induced strain
  • 12.2 Structures with lattice-induced strain
  • 12.3 Relaxation of lattice-induced strains
  • 12.3.1 Relaxation of the geometry
  • 12.3.2 Relaxation by defects
  • 12.3.3 Electronic relaxation
  • 12.3.4 Relaxation of symmetry-displacive phase transitions
  • 12.3.5 Changing the bond
  • graph-reconstructive phase transitions
  • 12.4 Incommensurate structures
  • 12.5 Summary
  • IV Applications and implications
  • 13 Applications
  • 13.1 Introduction r
  • 13.2 Crystallography
  • 13.2.1 Structure solution
  • 13.2.2 Analysis of crystal structures
  • 13.3 Physics
  • 13.3.1 Perovskite-related solids
  • 13.3.2 Electrical properties
  • 13.3.3 Magnetic properties
  • 13.3.4 Grain boundaries
  • 13.4 Mineralogy
  • 13.4.1 Soil chemistry
  • 13.4.2 Zeolites
  • 13.4.3 Glasses
  • 13.5 Chemistry
  • 13.5.1 Nuclear magnetic resonance
  • 13.5.2 Transition-metal complexes
  • 13.5.3 Heterogeneous catalysis
  • 13.5.4 Esterification and hydrolysis
  • 13.6 Biology
  • 13.6.1 Enzymes
  • 13.6.2 Calcium and sodium binding by proteins
  • 13.7 Databases
  • 14 Chemical implications of the bond valence model
  • 14.1 Why is the bond valence model so robust?
  • 14.1.1 The attractive force
  • 14.1.2 The repulsive force
  • 14.2 Two-body potential models
  • 14.3 The properties of the bond graph
  • 14.4 The Lewis electron-pair model
  • 14.5 Why are cations different from anions?
  • 14.6 Orbital models
  • 14.7 Electron density models
  • 14.8 The topology of the Madelung field
  • 14.9 Conclusions
  • Appendices
  • Appendix I Bond valence parameters
  • Appendix 2 Space group spectra
  • Appendix 3 Solution of the network equations
  • Appendix 4 Cation and anion bonding strengths
  • Appendix 5 References to the ICSD and the CSD
  • References
  • List of symbols
  • Index.