Neural networks and statistical learning. /

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Du, Ke-Lin.
Otros Autores: Swamy, M.N.S.
Formato: Libro
Lenguaje:
Publicado: New York : Springer, c2014.
Materias:
Acceso en línea:Tapa
Indice
LEADER 02549cam#a22002895a#4500
001 BCCAB018403
008 130826s2014####nyud###f#b####001#0#eng##
005 20190816145442.0
003 AR-BCCAB
245 0 0 |a Neural networks and statistical learning. /  |c Ke-Lin Du, M.N.S.Swamy. 
260 # # |a New York :  |b Springer,  |c c2014. 
300 # # |a xxvii, 824 p. 
520 # # |a Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining. 
020 # # |a 9781447155706 
100 1 # |a Du, Ke-Lin. 
700 1 # |a Swamy, M.N.S. 
080 # # |a 681.3:519.713 
650 # 7 |a Neural networks  |2 inist 
650 # 7 |a Redes neuronales  |2 inist 
690 # # |a Maestría en Ciencias Físicas 
010 # # |a ##2013948860 
040 # # |a DLC  |b eng  |c DLC  |e rda  |d DLC 
856 4 1 |u https://images-na.ssl-images-amazon.com/images/I/41onLYn9IvL.%5FSX331%5FBO1,204,203,200%5F.jpg  |3 Tapa 
856 4 1 |u http://campi.cab.cnea.gov.ar/tocs/23246.pdf  |3 Indice 
942 # # |c BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 20161206  |e Ciencia y Técnica  |i 23246  |o 681.3:519.713 D85  |p 23246  |t 1  |y BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 180129  |i 23570  |o 681.3:519.713 D85 Ej.2  |p 23570  |t 2  |y BK